Abstract

The hemodynamics and fluid mechanical forces in blood vessels have long been implicated in the deposition and growth of atherosclerotic plaque. Detailed information about the hemodynamics in vessels affected by significant plaque deposits can also provide insight into the mechanisms and likelihood of plaque weakening and rupture. In the current study, the governing equations are solved in their finite volume formulation in several patient-specific stenotic geometries. Of specific interest are the flow patterns and forces near ulcerations in the plaque. The flow patterns and forces in vessels with ulcerated plaques are compared with those in stenotic vessels without evidence of ulceration and to the hemodynamics in the same vessels as they likely appeared prior to ulceration. Hemodynamics "before" and "after" hemorrhage may suggest fluid mechanical and morphological factors of diagnostic and predictive value. Recirculation zones, vortex shedding, and secondary flows are captured by both laminar and turbulent solutions. The forces on vessel walls are shown to correlate with unstable plaque deposits. Performing before and after studies of vessels in long-term radiology studies may illuminate mechanisms of hemorrhage and other vessel remodeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.