Abstract

Purpose The purpose of this study is to consider the dynamics of Casson–Walters-B alongside gyrotactic microorganisms through the investigation of antibacterial and antiviral mechanisms using silver nanoparticles (AgNPs). The Casson fluid and Walters-B flow from the penetrable plate to the boundary layer (BL) in this analysis. The antiviral and antibacterial mechanisms of AgNPs were separately examined in this study. Design/methodology/approach The physical phenomenon of this problem was analyzed with partial differential equations (PDEs). These PDEs were changed into ordinary differential equations (ODEs) to further explain the significance of pertinent control parameters. The set of equations is solved numerically by implementing the spectral relaxation method (SRM). SRM is a numerical technique that uses the basic techniques of Gauss-Seidel. The SRM first decouples and linearizes the coupled nonlinear set of ODEs. Findings In this finding, it is found that the thermal radiation parameter produces higher temperatures within the BL to cause blockage in viral replications. It is found in this study that the magnetic parameter assisted in disinfection by lowering the antiviral and antibacterial mechanisms within the momentum BL. This is evident from the reduction in the velocity and momentum BL as the Casson and Walters-B parameters increase. Originality/value This paper is unique because it examined the antiviral and antibacterial mechanisms by using AgNPs. Prior to the authors’ understanding, no study of this type was conducted in the past. To the best of the authors’ knowledge, no other study in the past has examined the mechanisms of antiviral and antibacterial separately within the BL. Also, the simultaneous flow of Casson (honey) and Walters-B fluids were considered flowing through the vertical porous plate to the BL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.