Abstract

<div class="section abstract"><div class="htmlview paragraph">Sealant is applied between joined aircraft parts in the final stage of the assembly, before installation of permanent fasteners. In this paper a novel approach for aircraft assembly simulation is suggested, which allows to resolve the transient interaction between parts and sealant in the course of airframe assembly process. The simulation incorporates such phenomena as compliance of parts, contact interaction between them and fluidity of sealant with presence of free surface. The approach based on fluid-structure interaction techniques consists of two basic steps: at the first one the pressure of sealant is found after corresponding fluid dynamics problem is solved and at the second the displacements of parts and sealant are calculated through the solving of contact problem. Iterations between structural and fluid dynamics solvers are performed to achieve convergence. The developed approach is demonstrated on example of joining of two test aircraft panels. The viscosity of sealant was selected based on available experimental data. The results of simulations show how such parameters as fastening force and sealant layer thickness affect the assembly process.</div></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.