Abstract

The process of plastic flow localization under shear deformations of a composite material consisting from welded steel and copper is studied. A mathematical model describing this physical process is proposed. A new numerical approach based on Courant–Isaacson–Rees scheme is suggested. This algorithm was verified using three benchmark problems. Operability and effectiveness of this algorithm is confirmed. A numerical simulation of plastic flow localization in composite materials is performed. The influence on localization process of boundary conditions, of initial strain rate and materials width is studied. It is shown that at the initial stage the shear velocity of material layers oscillates. Theoretical estimates of frequency and oscillation period is given. Computational results coincide with these estimates. It is found that plastic flow localizes in the copper part of the composite. One or two areas of plastic flow localization appears depending on the width of steel and copper parts, as well as on the initial plastic strain rate and the selected type of a boundary conditions. The areas locate on characteristic distance from borders. The dependence of this distance and initial strain rate is shown and the corresponding estimates are obtained for two types of boundary conditions. When two areas of localization are formed, in one of them the temperature and the deformation increas faster than in another one.

Highlights

  • The process of plastic flow localization under shear deformations of a composite material consisting from welded steel and copper is studied

  • A new numerical approach based on Courant

  • Computational results coincide with these estimates

Read more

Summary

Introduction

Численное моделирование процессов формирования полос адиабатического сдвига в композитах Кудряшов Н. В работе рассматривается процесс локализации пластической деформации в композитном материале, состоящем из сваренных стальной и медной пластины при сдвиговых деформациях. Исследовано влияние граничных условий, начальной скорости пластической деформации и ширины материалов, входящих в композитный блок, на процесс локализации.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.