Abstract

This paper focuses on investigating the stall phenomenon of a three-stage electrical submersible pump using numerical methods by examining the internal and external characteristics of the pump under design conditions and critical stall and deep stall conditions. The energy losses inside the impeller and diffuser are also discussed. The internal flow at all pump stages under stall conditions is analyzed, highlighting differences and correlations. Under critical stall conditions, multiple vortices appear in the impeller channel of the first stage, while the flow in the secondary and final impeller remains smooth. Flow separation occurs in the diffusers at all three stages. Under deep stall conditions, the inlet setting angle causes all stages to enter a synchronous stall state. The range and intensity of vortices in the diffusers of all stages are further increased, seriously affecting the mainstream. This paper provides valuable insights for the research of internal flow and optimal design of electrical submersible pumps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call