Abstract
The rotating detonation engine (RDE) is an important realization of pressure gain combustion for rocket applications. The RDE system is characterized by a highly unsteady flow field, with multiple reflected pressure waves following detonation and an entrainment of partially-burnt gases in the post-detonation region. While experimental efforts have provided macroscopic properties of RDE operation, limited accessibility for optical and flow-field diagnostic equipment constrain the understanding of mechanisms that lend to wave stability, controllability, and sustainability. To this end, high-fidelity numerical simulations of a methane-oxygen rotating detonation rocket engine (RDRE) with an impinging discrete injection scheme are performed to provide detailed insight into the detonation and mixing physics and anomalous behavior within the system. Two primary detonation waves reside at a standoff distance from the base of the channel, with peak detonation heat release at approximately 10 mm from the injection plane. The high plenum pressures and micro-nozzle injector geometry contribute to fairly stiff injectors that are minimally affected by the passing detonation wave. There is no large scale circulation observed in the reactant mixing region, and the fuel distribution is asymmetric with a rich mixture attached to the inner wall of the annulus. The detonation waves’ strengths spatially fluctuate, with large variations in local wave speed and flow compression. The flow field is characterized by parasitic combustion of the fresh reactant mixture as well as post-detonation deflagration of residual gases. By the exit plane of the RDRE, approximately 95.7% of the fuel has been consumed. In this work, a detailed statistical analysis of the interaction between mixing and detonation is presented. The results highlight the merit of high-fidelity numerical studies in investigating an RDRE system and the outcomes may be used to improve its performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.