Abstract

Pre-detonators are commonly used in rotating detonation engine (RDE) experiments. Current experimental studies focus on the performance of pre-detonator while ignoring the influence of pre-detonator on the flow field. In numerical simulations one-dimensional detonation wave is usually used to ignite the fresh gas in RDE. This is a simplification of the pre-detonator used in practical hotfire tests. But the coupling between the pre-detonator and the combustor is ignored. The aim of the present study is to study the influence of pre-detonator on the flow field in the RDE. A model of RDE with a pre-detonator is built, in which three-dimensional numerical simulations fueled with hydrogen/air is performed. The influence of pre-detonator on the combustor in different stages is studied. After initiation, detonation wave from the pre-detonator forms two counter-rotating detonation waves. The tangential installation of pre-detonator fails in directional initiation of detonation wave. The coupling effect is shown as the reflection and expulsion of shock wave. Detonation wave or oblique shock wave in the combustion chamber enters the pre-detonator and turns into shock wave before colliding with the end and re-entering the combustion chamber. Under some circumstances, the reflected shock wave will initiate a detonation wave and affect the wave structure in the combustion chamber. In the stable stage, the reflected shock wave has no effect on the flow field. However, periodic collision of reflected shock wave with detonation wave at the junction causes ablation in long-time experiments. Increasing the axial distance between pre-detonator and injection wall is expected to be a solution for the ablation problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call