Abstract

Long, flexibly-jointed spines of Edinburgh Duck modules have the potential to enable the extraction of a large proportion of the wave energy from our seas and oceans. It is well-known that the ‘duck’ shape is able to efficiently absorb wave energy, and that jointed but controlled interconnections between ducks as part of a full spine can also benefit the performance. However, in order to progress further towards achieving optimal performance in real wave climates, a greater understanding of the significance of the spine configuration and scale, spine orientation, and directional, irregular wave conditions is required. By using an efficient hydrodynamic model of a ten-duck spine in conjunction with a constrained frequency-domain control strategy, this paper investigates the effects of the above factors on device performance (as a function of power extraction) in uni- and multi-directional versions of an irregular wave climate. A series of inferences are drawn from the simulations and discussed with regards to informing the direction of future duck spine designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.