Abstract

Study on temperature distribution simulation during cementing of hot dry rock (HDR) geothermal well is rare. It has important guiding significance to simulate the construction process of temperature distribution of hot dry rock on site construction. Based on numerical simulation of HDR considering heat-fluid-solid coupling, the influence of temperature distribution on well cementing is analyzed when the drilling fluid cycles and reaches stable state, respectively, and when the cement slurry is injected during the cementing process. It is found that the seepage at the well bottom accelerates the flow velocity of wellbore; the stable temperature change is less than the cyclic temperature change; and the upper and lower temperature variation of the stratum is greater when the cement slurry is injected. Therefore, as to cement retarder involved, the influence of temperature variation on concretion should be considered during cementing of the hot dry rock geothermal well.

Highlights

  • Articles on the simulation of downhole temperature field during well cementing are in a limited number, and especially those on simulating the temperature field of hot dry rock (HDR) well cementing are comparatively rare

  • Based on numerical simulation of HDR considering heat-fluid-solid coupling, the influence of temperature distribution on well cementing is analyzed when the drilling fluid cycles and reaches stable state, respectively, and when the cement slurry is injected during the cementing process

  • It is found that the seepage at the well bottom accelerates the flow velocity of wellbore; the stable temperature change is less than the cyclic temperature change; and the upper and lower temperature variation of the stratum is greater when the cement slurry is injected

Read more

Summary

Horizontal Temperature Field Simulation

Articles on the simulation of downhole temperature field during well cementing are in a limited number, and especially those on simulating the temperature field of hot dry rock (HDR) well cementing are comparatively rare. By simulating the horizontal and vertical distribution of the HDR downhole temperature field, we investigated the distributing characteristics and influential factors of HDR downhole temperature field, aiming at guiding operation of HDR well cementing

Geometric Model Building
Governing Equation
Boundary and Initial Value
Parameter Selection
Mesh Division
Analysis of Result
Temperature Variation during Injection of Cement Slurry
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call