Abstract

Falling film on horizontal tube evaporators, of both Mechanical Vapor Compression (MVC) and the Multi-Effect Distillation (MED) desalination systems, plays an important role in the heat and mass transfer (evaporation) and accordingly the systems productivity. Falling film thickness is mainly influenced by the intertube space, circumferential angle and the film’s Reynolds number. This paper presents two-dimensional numerical study of falling film thickness around horizontal tube in MVC and MED evaporators. The study is based on computational fluid dynamics (CFD) using volume of fraction (VOF) as a multi-phase technique in ANSYS Fluent. The numerical model is developed in order to study the heat and mass transfer charactristics, the liquid falling film behaviour and thickness distribution around circular horizontal. Four CFD study cases are developed to simulate the falling film behaviour at circumferential angle range from 150 to 1650 with inter-tube spacing of 10 mm, 16 mm, 33 mm and 40 mm and for constant value of flow rate and at the same surrounding conditions. Simulations are conducted using a domain of only two tubes with 20 mm outer diameter.The results from the numerical models are compared with the published experimental correlations, showing a comparatively reasonable agreement. In addition, a parametric study is carried out to illustrate the effect of flow Reyonlds number (Re) and intertube space on the average circumferential film thickness and heat transfer rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call