Abstract

Neurotransmitters in the terminal bouton of a presynaptic neuron are stored in vesicles, which diffuse in the cytoplasm and, after a stimulation signal is received, fuse with the membrane and release its contents into the synaptic cleft. It is commonly assumed that vesicles belong to three pools whose content is gradually exploited during the stimulation. This article presents a model that relies on the assumption that the release ability is associated with the vesicle location in the bouton. As a modeling tool, partial differential equations are chosen as they allow one to express the continuous dependence of the unknown vesicle concentration on both the time and space variables. The model represents the synthesis, concentration-gradient-driven diffusion, and accumulation of vesicles as well as the release of neuroactive substances into the cleft. An initial and boundary value problem is numerically solved using the finite element method (FEM) and the simulation results are presented and discussed. Simulations were run for various assumptions concerning the parameters that govern the synthesis and diffusion processes. The obtained results are shown to be consistent with those obtained for a compartment model based on ordinary differential equations. Such studies can be helpful in gaining a deeper understanding of synaptic processes including physiological pathologies. Furthermore, such mathematical models can be useful for estimating the biological parameters that are included in a model and are hard or impossible to measure directly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.