Abstract

The development of the bubble generator that can efficiently generate micro-nano bubbles has always been recognized as a challenge. Swirling flow is considered to be an efficient method to enhance hydrodynamic cavitation. The vortex supply chamber and the variable-diameter accelerated vortex cavitation reaction chamber were combined to obtain a stable high-speed tangential liquid flow and improve the cavitation effect inside the generator in this study. The central air intake column was innovatively installed above the cavitation reaction chamber, which prolonged the shear fracture time of bubbles under high shear force and improved the gas–liquid contact and mixing efficiency. The influence of geometric parameters on the internal and external flow fields of the generator was analyzed through the numerical simulation. The optimized central air intake column was located 10 mm above the inlet of the cavitation reaction chamber. The optimized variable diameter contraction angle was 16°, and the optimized generator outlet diameter was 15 mm. Through the bubble performance test, it was verified that the micro-nano bubbles with the minimum size and average size of 0.31 μm and 3.42 μm could be generated by the manufactured generator. The enforcement of the research provided theoretical guidance and data support for the development of efficient micro-nano bubble generators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call