Abstract

The ABAQUS software was used to analyze the residual stress of TiN film treated by the single point micro-scale laser shock peening (μLSP). In view of the multi-factor effect of μLSP, the response surface methodology (RSM) of Design-Expert software was utilized to analyze the influence of laser process parameters on the residual stress in TiN film, based on the Box-Behnken experimental design methods, as a result, optimal combination of the laser process parameters was obtained. The results showed that μLSP can transform the tensile residual stress in the TiN film into the compressive residual stress, the compressive residual stress was gradually increasing with the increased laser power density, when the laser power density was 8 GW/cm2, the maximum compressive residual stress of the film surface was up to -350.48 MPa. In addition, as the laser power density increased, the maximum compressive residual stress was moving away from the spot center. The optimal combination of the laser process parameters of μLSP was obtained by the RSM, the laser power density was 7.6 GW/cm2, laser spot diameter was 283 μm, and the number of shocking was 2 times. Simulation results of the average residual stress was -248.76 MPa, while the predicting result of regression model was -245.31 MPa, the error was just 1.38 %. The results showed that μLSP was feasible for improving the residual stress distribution of TiN film, and the RSM can effectively optimize the process parameters of μLSP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call