Abstract

ABSTRACTIn this study, the fluid flow and heat transfer characteristics of turbulent forced convection of air flow through perforated circular pin fin heat sinks with constant heat flux are investigated numerically. Circular perforated pin fins are shown to have 8% larger averaged Nusselt numbers than the corresponding solid pin cases. In addition, after the validation of the numerical results, the numerical optimization of this problem is also presented by using the response surface methodology (RSM) coupled with genetic algorithm (GA). The difference between the optimal thermal performance factor (η) which is calculated by regression function and obtained by using computational fluid dynamics (CFD) is less than 2%, and the numerical optimization shows that the enhancement of the objective function (η) can achieve 34%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.