Abstract
For the safe and efficient utilization of hydrogen-enriched natural gas combustion in industrial gas-fired boilers, the present study adopted a combination of numerical simulation and field tests to investigate its adaptability. Firstly, the combustion characteristics of hydrogen-enriched natural gas with different hydrogen blending ratios and equivalence ratios were evaluated by using the Chemkin Pro platform. Secondly, a field experimental study was carried out based on the WNS2-1.25-Q gas-fired boiler to investigate the boiler’s thermal efficiency, heat loss, and pollutant emissions after hydrogen addition. The results show that at the same equivalence ratio, with the hydrogen blending ratio increasing from 0% to 25%, the laminar flame propagation speed of the fuel increases, the extinction strain rate rises, and the combustion limit expands. The laminar flame propagation speed of premixed methane/air gas reaches the maximum value when the equivalence ratio is 1.0, and the combustion intensity of the flame is the highest at this time. In the field tests, as the hydrogen blending ratio increases from 0% to nearly 10% with the increasing excess air ratio, the boiler’s thermal efficiency decreases as well as the NOx emission. This indicates that there exists a tradeoff between the boiler thermal efficiency and NOx emission in practice.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.