Abstract
Abstract The purposes of this study are to compare the stability domains and the pollutant emissions when combustion occurs with and without addition of H2 to a kerosene (Jet A1)/air premixed prevaporised mixture injected in a lean gas turbine combustor. Chemiluminescence of CH*, pollutant emissions (NOx and CO) and pressure fluctuations data are simultaneously collected in order to determine the effects of H2 addition on the stability of the combustion and on the flame structure for an inlet temperature of 473 K, atmospheric pressure and for a large range of equivalence ratio (from 0.3 to 1). Addition of hydrogen enables keeping stable combustion conditions when, for the same kerosene mass flow, the flame becomes lifted and very unstable. As for pollutant emissions, results show that the equivalence ratio is the key parameter to control NOx emission even in the situation where the combustion power is increased due to H2 addition. As H2 addition strongly increases the flammability limits and the combustion stability domain, stable combustion can occur at leaner equivalence ratio and then decreases CO and NOx emissions. This is an important fact since no substitution effect takes place in the reduction of NOx and CO emissions. Study at constant combustion power and equivalence ratio by adjusting hydrogen and kerosene mass flow shows again a decrease in the pollutant emissions. Hydrogen injection in power generation systems using combustion seems to be a promising way in combustion research since due to the combined effects of enlarging combustion stability domain and reducing NOx emissions by substituting kerosene to the benefit of H2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.