Abstract
The microstructure evolution, plastic deformation, and damage severity during the open die hot forging of a martensitic stainless steel were investigated using finite element (FE) simulation. A microstructure evolution model was developed and combined with a visco-elastoplastic model to predict the strain, the strain rate, and the temperature distribution, as well as the volume fraction and the size of dynamically recrystallized grains over the entire volume of an industrial size forging. The propensity to damage during hot forging was also evaluated using the Cockcroft & Latham model. The three models were implemented in the FE code and the results analyzed in terms of microstructure inhomogeneity and stress levels in different regions of the forging. A good agreement was obtained between the predicted and the experimental results, demonstrating that the simulation provided a realistic representation of the forging process at the industrial scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.