Abstract

Purpose – The purpose of this paper is to study the effect of feeding scheme on melt flow and temperature field during the steady-state of level-pour direct-chill (DC) casting of A390 alloy hollow billet and optimize the design of feeding scheme. Design/methodology/approach – Melt flow and temperature field are investigated by numerical simulation, which is based on a three-dimensional mathematical model and well verified by experiments. Findings – The numerical results reveal that both melt flow and temperature field are obviously affected by the feeding scheme. The homogeneity of melt flow and temperature field in hollow billet with the feeding scheme of modified four inlets are better than the other feeding schemes. Experimental results show that crack can be eliminated by increasing the number of feeding inlets. The primary Si size appears unaffected while the distribution of primary Si particles is highly affected by the change of feeding scheme. Only with the feeding scheme of modified four inlets can fine and uniformly distributed primary Si particles be achieved. Practical implications – The paper includes implications for the design of feeding scheme in level-pour DC casting of hollow billet for practical use. Originality/value – This paper develops different feeding schemes for level-pour DC casting of hollow billet and optimizes the design of feeding scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call