Abstract

Horizontal zone refining has been widely used for the production of ultra-pure metals through solidification-induced microsegregation effect. Current research on vertical zone refining is limited, owing to the high-temperature cracking risk of crucible; however, it is highly potential for low-melting metals as demonstrated in this research. The present work comprehensively dealt with both back-diffusion and coarsening effect on the solute redistribution by adopting the Voller-Beckerman (V-B) model. Physical fields, including temperature, melt flow and solute distribution, were numerically simulated based on In–1 wt.%Sn binary alloy by means of finite volume method, and the dynamic interaction between melt-flow and solute distribution was clarified. A high-efficiency processing routine was suggested, and it was experimentally proved that the vertical zone refining was a promising method for producing ultra-pure 7 N-grade indium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.