Abstract

Carbon doping in GaN-on-Silicon (Si) epitaxial layers is an essential way to reduce leakage current and improve breakdown voltage. However, complicated occupy forms caused by carbon lead to hard analysis leakage/breakdown mechanisms of GaN-on-Si epitaxial layers. In this paper, we demonstrate the space charge distribution and intensity in GaN-on-Si epitaxial layers from 0 to 448 V by simulation. Depending on further monitoring of the trapped charge density of CN and CGa in carbon-doped GaN at 0.1 μm, 0.2 μm, 1.8 μm and 1.9 μm from unintentionally doped GaN/carbon-doped GaN interface, we discuss the relationship between space charge and plateau, breakdown at CN concentrations from 6 × 1016 cm−3 to 6 × 1018 cm−3. The results show that CN in different positions of carbon-doped GaN exhibits significantly different capture and release behaviors. By utilizing the capture and release behavior differences of CN at different positions in carbon-doped GaN, the blocking effect of space charge at unintentionally doped GaN/carbon-doped GaN interface on electron conduction was demonstrated. The study would help to understand the behavior of CN and CGa in GaN-on-Si epitaxial layers and more accurate control of CN and CGa concentration at different positions in carbon-doped GaN to improve GaN-on-Si device performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call