Abstract

Potential uses of specific extremely high frequency (EHF) and submillimeter-wave (SMMW) channels at 90, 166, 283, 220, 325, 340, and 410 GHz for passive spaceborne remote sensing of the troposphere and lower stratosphere are investigated using an iterative numerical radiative transfer model. Collectively, these channels offer potential for high spatial resolution imaging using diffraction-limited apertures of practical size, along with the ability to profile water vapor, map precipitation beneath optically opaque cloud cover, and to measure nonprecipitating cloud (e.g. cirrus) parameters. A passive airborne imaging instrument for tropospheric meteorological sensing at 90, 150, 183+or-1, 3, 7, 220, and 325+or-1, 3, 9 GHz, called the Millimeter-wave Imaging Radiometer (MIR), is described. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.