Abstract

We study the pricing problem of Asian options when the underlying asset price follows a very general state-dependent regime-switching jump–diffusion process via a partial differential equation approach. Under this model, the price of the option can be obtained by solving a highly complex system of coupled two-dimensional parabolic partial integro-differential equations (PIDEs). We prove existence of the solution to this system of PIDEs by the method of upper and lower solutions via constructing a monotonic sequence of approximating solutions whose limit is a strong solution of the PIDE system. We then propose several numerical schemes for solving the system of PIDEs. One of the proposed schemes is built upon the constructive proof, hence its results are provably convergent to the solution of the system of PIDEs. We illustrate the accuracy of the proposed methods by several numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.