Abstract

Textures and patterns are the distinguishing characteristics of objects. Texture classification plays fundamental role in computer vision and image processing applications. In this paper, texture classification using PDE (partial differential equation) approach and wavelet transform is presented. The proposed method uses wavelet transform to obtain the directional information of the image. A PDE for anisotropic diffusion is employed to obtain texture component of the image. The feature set is obtained by computing different statistical features from the texture component. The linear discriminant analysis (LDA) enhances separability of texture feature classes. The features obtained from LDA are class representatives. The proposed approach is experimented on three gray scale texture datasets: VisTex, Kylberg, and Oulu. The classification accuracy of the proposed method is evaluated using k-NN classifier. The experimental results show the effectiveness of the proposed method as compared to the other methods in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.