Abstract
The article provides and discusses details of numerical proceeding for the expansion method to calculate energy positions and wave functions of the localized and resonant electronic states emerging in quantum well-type semiconductor nanostructures because of perturbation of confined states by the Coulomb potential of the hydrogenic impurity center. Effective mass approximation is used. Several excited both resonant and non-resonant states are calculated and classified for the case of a simple rectangular GaAs/AlGaAs quantum well. Results are compared to the ones in literature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have