Abstract
Flows in microchannels were successfully predicted, in the past, both analytically and numerically, employing the extended Navier–Stokes equations (ENSE). In ENSE, the self-diffusion transport of mass, together with the resulting momentum and heat transport, is taken into account properly and the same is omitted in the classical Navier–Stokes equations. The ENSE have been employed here to numerically predict backward-facing step flows in microchannels, and the predictions are summarized in this paper. The results obtained by employing ENSE are compared with the available literature data computed by both direct simulation Monte Carlo and slip-velocity-based simulations. The good agreement of the present results with those given in the literature evidently points out that the ENSE can be applied to gas flows through complex microchannel geometries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have