Abstract
Indoor environmental quality, e.g. air quality and thermal environments, has a potential impact on residents in indoors. Development of a computer simulated person (CSP) for indoor computational fluid dynamics (CFD) simulation can contribute to the improvement of design and prediction method regarding the interaction between indoor air/thermal environmental factors and human responses. In this study, a CSP integrated with a virtual airway was developed and used to estimate inhalation exposure in an indoor environment. The virtual airway is a numerical respiratory tract model for CFD simulation that reproduces detailed geometry from the nasal/oral cavity to the bronchial tubes by way of the trachea. Physiologically based pharmacokinetic (PBPK)-CFD hybrid analysis is also integrated into the CSP. Through the coupled simulation of PBPK-CFD-CSP analysis, inhalation exposure under steady state conditions where formaldehyde was emitted from floor material was analysed and respiratory tissue doses and their distributions of inhaled contaminants are discussed quantitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.