Abstract
SUMMARY McKenzie's model of sedimentary basin evolution and its modification, widely used in geophysics, sometimes fails to explain discrepancies between predicted and observed values of extension, thinning and subsidence of the Earth's crust, as for the North Sea. We develop a numerical model of sedimentary basin evolution based on the mechanism suggested by Lobkovsky. In the course of rifting, accompanied by thinning of lower parts of the lithosphere, the roof of the underlying asthenosphere moves upward. The material of the mantle lifts and partially melts owing to the reduction of pressure. The density difference between the melt and the crystalline skeleton results in the filtration of the lighter melt and its accumulation in the form of a magmatic lens. Due to changed P-T conditions, the material of the lens undergoes the gabbro-eclogite phase transformation. The resultant anomalously heavy eclogite lens sinks in the surrounding material. This induces a viscous flow, changing the surface topography and forming a sedimentary basin. We construct a 2-D numerical model describing a viscous flow induced by subsidence of a heavy body and compute changes of surface topography. To compute the flow we employ the Galerkin-spline approach, with modifications allowing for density discontinuities and time dependence of the phase transformation. We apply the model to the cases of the Illinois, Michigan and Williston basins. The computed and tectonic subsidence curves agree well for these cases. The proposed model is compatible with the seismic structure of the crust and upper mantle below these basins. The model is also consistent with gravity data. The approach is applicable to other intracratonic basins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.