Abstract

Under-expanded particle-laden flows resulting in velocities greater than the local speed of sound are a feature of a wide number of applications in aviatic, astronautical, and process engineering scenarios including those relating to the accidental release of high-pressure fluids from reservoirs or pipelines. Such pipelines are considered to be the most likely method for transportation of captured carbon dioxide (CO2) from power plants and other industries prior to subsequent storage in carbon capture and storage (CCS) applications. Their safe operation is of paramount importance as their contents are likely to be in the region of several thousand tonnes. CO2 poses a number of dangers upon release due to its physical properties. It is a colourless and odourless asphyxiant which has a tendency to sublimation and solid formation, and is directly toxic if inhaled in air at concentrations around 5%, and likely to be fatal at concentrations around 10%. The developments presented in this paper concern the formulation of a multi-phase homogeneous discharge and dispersion model capable of predicting the near-field fluid dynamic, phase and particle behaviour of such CO2 releases, with validation against measurements of laboratory-scale jet releases of CO2 recently obtained by our group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.