Abstract

Lightweight component design is effectively achievable through sandwich structures; many past research studies in the aerospace and racing sectors (since the 1920s) have proven it. To extend their application into the automotive and other transport industries, manufacturing cycle times must be reduced. This can be achieved by sandwich materials made of continuous fibre-reinforced thermoplastic (CFRTP) cover layers and thermoplastic honeycomb cores. To widen the application of flat thermoplastic-based sandwich panels into complex parts, a novel forming technology was developed by the Fraunhofer Institute of Microstructure of Materials and Systems (IMWS). Manufacturing defects like wrinkling and surface waviness should be minimised to achieve high reproducibility of the sandwich components. Studying different manufacturing parameters and their influence on the final part is complex and challenging to analyse through experiments, as it is time-consuming. Therefore, a finite element (FE) modelling approach is implemented to reduce such efforts. Initially, a thermoforming model is developed and validated with experimental results to check its reliability. Further, different simulations are performed to optimise the novel sandwich-forming process. In this study, a thermoplastic sandwich made of polypropylene (PP) honeycomb core and polypropylene glass fibre (PP/GF) cross-ply as cover layers was used, and its numerical model was executed in LS-DYNA software release R11.2.1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.