Abstract

This paper assumes that a neo-Hookean matrix with neo-Hookean fibres is representative of soft tissue. Under this assumption, a unit cell model is proposed to investigate the fibre-matrix interfacial stress field for biological soft tissue under biaxial loadings. In this unit cell model, the soft tissue is treated as a composite where the matrix is unidirectionally reinforced with a single family of aligned fibres. The results are compared with the model of Guo et al., which accounts for the fibre-matrix interfacial stress field, and Qiu and Pence's model, which does not proceed from the assumption that the fibres are themselves neo-Hookean. It is found that the stress representative of the fibre-matrix interface plays an important role in the deformation of the composite, and the model of Guo et al. underestimates this stress under large biaxial deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.