Abstract

The turbulent advection-diffusion mathematical model in three-dimensional space is solved by a mixed finite element finite difference method. Linear finite elements in the vertical direction and central finite differences in the horizontal directions are used coupled with the Galerkin error minimization procedure. The integration in time is performed in fractional steps (one explicit one implicit) by splitting the differential operator. The method is illustrated by application to the three-dimensional movement of suspended sediment. Its accuracy is checked by comparison to analytical solutions and its efficiency is gauged relative to finite elements and implicit finite difference solutions for two-dimensional suspended sediment transport over a dredged channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.