Abstract
The paper describes the development of numerical models for analysing stainless steel plates in compression. Material tests on coupons cut in the longitudinal, transverse and diagonal directions are included as are the results of tests on stainless steel plates. Detailed comparisons are made between the experimental and numerical ultimate loads, load–displacement curves and load–strain curves. It is shown that excellent agreement with tests can be achieved by using the compressive stress–strain curve pertaining to the longitudinal direction. The effect of anisotropy is investigated using elastic–perfectly-plastic material models, where the anisotropic material model is based on Hill’s theory. The models indicate that the effect of anisotropy is small and that it may not be required to account for anisotropy in the modelling of stainless steel plates in compression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.