Abstract
Dam operation is regarded as an effective way to increase water, food, and energy security for society. However, with the increasing water demand and frequent extreme droughts, numerous rivers worldwide go through periods of water scarcity and water ecosystem deterioration to varying degrees. Balancing the water supply and ecological flow of the dam-regulated river network is essential in the context of river restoration. In this study, we proposed a hydrodynamic and water quality model of a dam-regulated river network balancing water supply and ecological flow using the Environmental Fluid Dynamics Code (EFDC). A section of Jinjiang watershed located in the southwestern of China was chosen as the study area. Firstly, the model was calibrated and validated. By comparing the simulated values with the measured values, the statistical analysis results showed that the relative root mean-squared error (RRMSE) values of water level, COD and NH3-N were 5.5–8.1%, 23.6% and 28.4%, respectively, indicating an adequate degree of agreement between simulation and observation. Based on the established model, dam operation schemes under a dry hydrologic scenario and emergency contamination scenario were formulated to ensure the requirement of ecological water flow and water quality simultaneously. For the dry hydrologic scenario, the ecological water requirement could be satisfied through the dam operation. However, in an emergency contamination scenario, regional water quality requirements cannot be met through dam operation. The dam operation only plays a role in controlling the scope of pollution. This study is expected to provide scientific support for dam-regulated river network management and downstream river ecosystem protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.