Abstract

A numerical model for a three-dimensional heat and fluid flow through a bank of infinitely long cylinders in yaw has been proposed to investigate complex flow and heat transfer characteristics associated with manmade structures such as extended fins and plate fins in heat transfer equipment. By exploiting the periodicity of the structure, only one structural unit has been taken as a calculation domain. An economical quasi-three-dimensional calculation procedure has been proposed to replace exhaustive full three-dimensional numerical manipulations. It has been shown that, under macroscopically uniform flow, the three-dimensional governing equations reduce to quasi-three-dimensional forms, in which all derivatives associated with the axis of the cylinder can be either eliminated or replaced by other determinable expressions. Thus, only two-dimensional storage is required for the dependent variables in question. Extensive numerical calculations were carried out for various sets of the porosity, degree of anisotropy, Reynolds number and macroscopic flow direction in a three-dimensional space. The numerical results thus obtained for periodically fully developed flow and temperature fields were integrated over a structural unit to determine the permeability tensor, Forchheimer tensor and directional interfacial heat transfer coefficient, to elucidate the effects of yaw angle on these macroscopic flow and heat transfer characteristics. Upon examining these numerical data, a useful set of explicit expressions has been established for the permeability tensor, Forchheimer tensor and directional interfacial heat transfer coefficient to characterize flow and heat transfer through a bank of cylinders in yaw.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.