Abstract

A numerical experiment at a pore scale using a full set of Navier-Stokes and energy equations has been conducted to simulate laminar fluid flow and heat transfer through an anisotropic porous medium. A collection of square rods placed in an infinite two-dimensional space has been proposed as a numerical model of microscopic porous structure. The degree of anisotropy was varied by changing the transverse center-to-center distance with the longitudinal center-to-center distance being fixed. Extensive calculations were carried out for various sets of the macroscopic flow angle, Reynolds number and degree of anisotropy. The numerical results thus obtained were integrated over a space to determine the permeability tensor, Forchheimer tensor and directional interfacial heat transfer coefficient. It has been found that the principal axes of the permeability tensor (which controls the viscous drag in the low Reynolds number range) differ significantly from those of the Forchheimer tensor (which controls the form drag in the high Reynolds number range), The study also reveals that the variation of the directional interfacial heat transfer coefficient with respect to the macroscopic flow angle is analogous to that of the directional permeability. Simple subscale model equations for the permeability tensor, Forchheimer tensor and directional Nusselt number have been proposed for possible applications of VAT to investigate flow and heat transfer within complex heat and fluid flow equipment consisting of small scale elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.