Abstract

AbstractPavement performance is usually predicted by large-scale laboratory experiments, expensive field tests and/or comparatively cheaper numerical modelling alternative. In this study, a finite element limiting strain model has been developed to investigate the strain response of both unreinforced and geogrid-reinforced pavements on unpaved roads where the geogrid is placed at the bottom of the unbound granular base layer. A two-dimensional (2D) axisymmetric finite element model (FEM) is used to analyse the behaviour of both unreinforced and geogrid-reinforced granular base. The critical pavement responses (vertical surface deformation, compressive strain and compressive stress at the top of subgrade, etc.) are simulated numerically using ABAQUS. These critical responses are used to develop the pavement performance models (strain limiting models) and to predict long-term service life of pavement or the reduction of thickness of granular base for equivalent service life or a combination of both. The parametric results are then used to develop design charts to aid practitioners to use directly in designs. The numerical model is verified using published literature-based information and found to be reasonable. The results show that the traffic benefit ratio (TBR) of 3.1 at a 20 mm rut depth can be achieved for a thin granular base built over soft subgrade using a medium stiff geogrid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call