Abstract
AbstractThe main focus of this study is on the near-field flow and mixing characteristics of the thermal and saline wall jets. A numerical study of the buoyant wall jets discharged from submerged outfalls (e.g., from desalination plants) has been conducted. The performance of different Reynolds-averaged Navier-Stokes (RANS) turbulence models has been investigated and various k-e, k-ω, and other turbulence models have been studied. The results of cling length, plume trajectory, temperature dilutions, and temperature and velocity profiles are compared to both available experimental and numerical data. It was found that two models perform best among the seven models chosen in this paper. According to the results from different simulations, the paper proposes corresponding relationships and comparative graphs that are helpful for a better understanding of buoyant wall jets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.