Abstract

Using the existing two-dimensional experimental data and Open-source Fields Operation and Manipulation (OpenFOAM) software, this study performs a comprehensive comparative analysis of three types of landslide-generated tsunamis (subaerial, partially submerged, and submarine). The primary objective was to assess whether numerical simulations can accurately reproduce the experimental results of each type and to compare the predictive equations of the tsunami amplitudes derived from experimental and simulated data. The mesh size and dynamic viscosity parameters were initially optimized for a specific partially submerged landslide tsunami scenario and then applied across a broader range of experimental scenarios. Most of the simulated wave amplitudes remained within the 50% error margin, although significant discrepancies were observed between landslide types. When focusing on the crest amplitude of the first wave, the simulations of subaerial landslides least deviated from the experimental data, with a mean absolute percentage error of approximately 20%, versus approximately 40% for the partially submerged and submarine landslides. The predictive equations derived from the simulations closely matched those from the experimental data, confirming that OpenFOAM can effectively capture complex landslide–tsunami dynamics. Nonetheless, variations in the coefficients related to slope angles highlight the need for further calibration to enhance the simulation fidelity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.