Abstract

Thermal stratification affects the flow in and above urban street canyons. Such thermal effect is often not noticed, and can lead to pessimistic or optimistic results of the air quality in urban street canyons under calm conditions and low wind speeds. A three-dimensional CFD model is applied to simulate the flow patterns and particle concentrations in a street canyon under different aspect ratios and ground thermal conditions. The model is validated by the experimental data found in the literature. The simulation results are used to evaluate the flow and pollutant dispersion properties in the canyon. The results show that the ground thermal conditions can significantly affect the ventilation performance of the street canyon, which improves with the increased temperature difference (ΔT) between the ambient air and the ground of the canyon. The increased ΔT enhances the buoyancy induced secondary flow in the street canyon and hence reduce the particle concentrations in the canyon, with this influence more pronounced for small street widths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call