Abstract

Abstract The shallow-water and multilayer hydrostatic models have been commonly used to analyze the problems of a sediment-laden, plane open-channel flow. The models are adequate to solve a quasi-hydrostatic flow problem, but their accuracy deteriorates as the e ects of the vertical acceleration gain in significance. Herein, a higher-order numerical model for treating the problems of unsteady, plane open-channel flow over a movable bed is proposed. In this model, the flow hydrodynamics is governed by the depth-averaged Boussinesq-type equations, and the bed morphodynamics is determined by an Exner-type equation and additional equations describing the non-equilibrium transports of suspended load and bed load. A hybrid finite-volume and finite-di erence scheme was used to discretize and solve the governing equations, yielding solutions that are in satisfactory agreement with the experimental data. Overall, the results of the proposed model for the temporal free-surface profile and bed evolution were fairly adequate. For the two particular cases considered, however, the quality of its results was moderately a ected by the e ects of the three-dimensional characteristics of the dam-break flow and the sliding of the dike body due to sub-surface flow. The results of this investigation highlight the importance of including a higher-order Boussinesq-type correction for refining sediment transport computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.