Abstract

For solar cells composed of direct bandgap semiconductors such as GaAs, the performance can be significantly improved by utilizing photon recycling and luminescence coupling effects. Accurate modeling with those effects may offer insightful guidance in designing such devices. Previous research has demonstrated different numerical models on photon recycling and luminescent coupling. However, most of those works are based on complicated theoretical derivation and idealized assumptions, which made them hard to implement. In addition, very few works provide method to model both photon recycling and luminescent coupling effects. In this paper, we demonstrate an easy-to-implement but accurate numerical model to simulate those effects in multijunction solar cells. Our numerical model can be incorporated into commonly used equivalent circuit model with high accuracy. The simulation results were compared with experimental data and exhibit good consistency. Our numerical simulation is based on a self-consistent optical-electrical model that includes non-ideal losses in both the single junction and the tandem device. Based on the numerical analysis, we modified the two-diode circuit model by introducing additional current-control-current sources to represent the effects of both photon recycling and luminescence coupling. The effects of photon recycling on the diode equation have been investigated based on detailed-balanced model, accounting for internal optical losses. We also showed the practical limit of performance enhancement of photon recycling and luminescent coupling effects. This work will potentially facilitate the accurate simulation of solar cell with non-ideal effects, and provide more efficient tools for multijunction solar cell design and optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.