Abstract

This thesis focuses on the numerical modeling of co-reactant electrogenerated chemiluminescence (ECL) systems that have been recently proposed for analytical applications. Co-reactant ECL is light emission triggered by an electrochemical reaction of a luminophore with a co-reactant. Many researchers are trying to expand its application in the analytical field with carrying out various experiments. However, recent reports on the co-reactant ECL have revealed several phenomena that are not yet fully understood from theoretical viewpoint. Better understanding of the reaction mechanism for ECL generation is necessary for further improvement of the co-reactant ECL. In this context, three kinds of recently-proposed co-reactant ECL systems were numerically modeled in this study to analyze the reaction mechanism. The numerical modeling in this study mainly deals with dynamic ECL behavior while the potential of a working electrode changes with time. The modeling of this kind of dynamic ECL behavior provides us more information than that of static ECL behavior because very precise analysis can be carried out by the consideration of dynamic changes in the modeling parameters. In conclusion, the numerical modeling in this study contributed to the better understanding of the reaction mechanism for ECL generation, which can support further improvement of co-reactant ECL systems. Analysis for the reaction mechanism from theoretical viewpoint should be adequately considered in future experimental studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.