Abstract
This paper presents a combined field measurement and finite element modeling analysis of the mullions occurring on the contact of two granitic rocks with different grain size in the Taili High-Strain Deformation Zone (THDZ), West Liaoning of North China. All of the field data are located in the plot zone of the modeling results. Numerical modeling results indicate that: (1) The inter-angle between the tangent lines cross the cusp point and the ratio R of amplitude and width of mullions are the most effective parameters to describe the geometric shape and evolution of mullions, as well as useful indicators of the rheology of rocks. (2) The competence contrast controls the growth rate of mullions under shortening. It determines the possible ratio R of final mullions. Moreover, decreasing of the cusp angle in high competence contrast materials is faster than that in low competence contrast model. (3) The initial disturbance is an essential factor for the generation of mullions. Those contacts with higher initial disturbance will develop into mullions more easily and have a high growth rate during the same shortening deformation regime. (4) The rheology and deformation behavior of the granitic rocks in the study area are primarily controlled by the grain sizes of quartz and feldspar. The effective viscosity ratio of biotite adamellite and granitic gneisses is about 0.01–0.5. The deformation mechanisms of these granitic rocks should be dominated by a grain-size-sensitive diffusion creep.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have