Abstract

Aluminium-air batteries have been considered as one of the most promising next-generation energy storage devices. In this work, based on COMSOL Multiphysics, we firstly explored the effect of 3D pore size structure change on the permeation performance of the solution. The results showed that enhancing the permeation stroke of permeable solutions was beneficial to expanding the electrode reaction contact area, but it would reduce the permeation and corrosion resistance effects. For this reason, we further carried out a secondary study of TPMS structure on fluid permeation and its electrochemical performance based on the TPMS structure modelling mechanism. The results showed that the TPMS structure possessed both good solution permeation reaction rate and good corrosion resistance. Additionally, in order to further verify the validity of the simulation data, we carried out the validation of the self-corrosion rate, discharge properties, and electrochemical properties. From the final data, the discharge voltage of the TPMS structure was only 1.43 V, but its corrosion current and polarisation impedance were 2.207 × 10−2 A/cm2 and 2.2 Ω∙cm2, respectively. At the same time, the structure also had good solution permeability. Therefore the porous anode structure design for aluminium-air batteries in three-dimensional state is preferred.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call