Abstract

Flavin is one of the most prevalent redox molecules utilized by electroactive bacteria. Electroactive bacteria form a three-dimensional architecture with multiple cell assemblages on electrodes in bioelectrochemical systems. This provokes the importance of unveiling the redox chemistry of flavins during electron transfer not only at the bacteria/electrode interface but also inside cell assemblages. However, it has been difficult to directly compare the redox species contributing to each electron transfer reaction. In this study, to simultaneously detect the flavin redox species at the electrode surface and those in cell assemblages, we conducted bipotentiometric cyclic voltammetry on a colony of Shewanella oneidensis MR-1. The bipotentiometric data showed that flavin mononucleotide proceeds the redox cycle at − 0.43 V (vs. standard hydrogen electrode) in the MR-1 colony assignable to the semiquinone/hydroquinone redox cycle, which was supported by experiments with semiquinone scavenger and gene deletion mutants. Notably, the peak at − 0.43 V was not detected at the electrode surface, indicating that the flavin redox cycles and redox potentials involved in the electron transfer inside MR-1 assemblages differ from those at the MR-1/electrode interface. The measurement system presented herein offers a platform to clarify the redox reactions in cell assemblages as well as at the bacteria/electrode interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call