Abstract
This paper presents the application of a numerical model that was developed to describe the Steam Reforming Process (SRP model) in a small-scale reformer. The reformer consists of a burner enclosed in a vessel while the reforming reaction occurs in channels with multiple passages installed around the vessel. The SRP model was implemented in the C language and is used as a User Defined Function (UDF) in the commercial program Fluent.This model is a one-dimensional representation of the reforming channels that surround the burner enclosure and was previously validated against experimental data and a Fluent-based simulation. The burner is simulated with a 2D approximation that was also previously evaluated against both experimental and 3D burner calculations. The reformer and burner model are coupled by the temperature distribution in the dividing wall that is updated by the SRP model.The present paper presents applications of the burner model and the coupled reformer model. The objective of the study is to scale-up an existing reformer from 5 to 10 kg/day hydrogen production. Keeping the initial dimensions of the burner and doubling the flow rates, the model is used to analyze the position of the radiation shield on temperature and heat flux distribution. The simulations for the coupled model are used to analyze the effects of modifying the catalyst reaction length, position and the global dimensions of the reformer using a geometric scale-up factor.n
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.