Abstract

A mathematical model of three-dimensional nonequilibrium condensing wet-steam flow is established in Eulerian form, based on conservation laws for a mixture of steam and water droplets. The method of moments is introduced in modeling the droplet spectrum. To describe the nonequilibrium condensing process, models for classical nucleation and enhanced droplet growth are applied. A special high-order implicit scheme is constructed for this condensing flow model. Tables based on IAPWS-IF97 formulae are used in solving the thermal properties of wet steam. The numerical results for a two-dimensional supersonic nozzle and a low-pressure steam turbine stage are compared with experimental data. The good agreement indicates the effectiveness of the condensation model and numerical scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.