Abstract

The formation of water droplets in low-pressure steam turbine seriously degrades the performance of the turbine. In order to simulate the wet steam flow with spontaneous condensation, an Eulerian/Eulerian model was developed, in which the Navier-Stokes equations for water vapor flow are coupled with two additional equations describing the formation and the distributions of water droplets. The classical condensation theory was used to model the condensation process. With this model, the three dimensional (3D) steady wet steam flow with spontaneous condensation in three low pressure (LP) stages of an industrial steam turbine was numerically investigated and the results were compared with those in superheated flow. The distribution of pressure, the enthalpy drop, the reaction degree, the outflow velocity and flow angle in each wet steam turbine stage obviously change due to the spontaneous condensation in wet steam flow, compare to those in the superheated flow. The re-distribution of flow parameters in condensing flow leads to that the turbine stages run at ‘off-design’ condition actually, which leads to additional efficiency losses besides the well-known non-equilibrium losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call