Abstract

We develop algorithms for the numerical computation of the quadratic hedging strategy in incomplete markets modeled by a pure jump Markov process. Using the Hamilton-Jacobi-Bellman approach, the value function of the quadratic hedging problem can be related to a triangular system of parabolic partial integrodifferential equations (PIDEs), which can be shown to possess unique smooth solutions in our setting. The first equation is nonlinear, but does not depend on the payoff of the option to hedge (the pure investment problem), while the other two equations are linear. We propose convergent finite-difference schemes for the numerical solution of these PIDEs and illustrate our results with an application to electricity markets, where time-inhomogeneous pure jump Markov processes naturally occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.