Abstract

In this paper the implicit-explicit (IMEX) two-step backward differentiation formula (BDF2) method with variable step-size, due to the nonsmoothness of the initial data, is developed for solving parabolic partial integro-differential equations (PIDEs), which describe the jump-diffusion option pricing model in finance. It is shown that the variable step-size IMEX BDF2 method is stable for abstract PIDEs under suitable time step restrictions. Based on the time regularity analysis of abstract PIDEs, the consistency error and the global error bounds for the variable step-size IMEX BDF2 method are provided. After time semidiscretization, spatial differential operators are treated by using finite difference methods, and the jump integral is computed using the composite trapezoidal rule. A local mesh refinement strategy is also considered near the strike price because of the nonsmoothness of the payoff function. Numerical results illustrate the effectiveness of the proposed method for European and American options under jump-diffusion models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call